Blockade of a Resting Potassium Channel and Modulation of Synaptic Transmission by Ecstasy in the Hippocampus

LOUIS S. PREMKUMAR and GERARD P. AHERN

Department of Membrane Physiology and Biophysics, John Curtin School of Medical Research, Australian National University, Canberra, Australia

Accepted for publication April 28, 1995

ABSTRACT

3,4-Methylenedioxymethamphetamine (ecstasy, MDMA) and related amphetamines are CNS stimulants that have euphoric, memory-enhancing and neurotoxic properties. When applied in pharmacological doses to cultured rat hippocampal neurons, ecstasy reduced the conductance of a 50-Ps barium-sensitive resting K+ channel and increased neuronal excitability. Ecstasy enhanced synaptic strength by irreversibly increasing the amplitude of excitatory autaptic currents and the frequency of spontaneous excitatory postsynaptic currents. Ecstasy did not alter the amplitude of inhibitory autaptic currents or the frequency of spontaneous inhibitory postsynaptic currents but reversibly prolonged the decay phase of inhibitory autaptic currents and spontaneous inhibitory postsynaptic currents. These results suggest that K+ channel blockade and the effects on synaptic transmission may contribute to the pharmacological effects of ecstasy and other amphetamines.

Amphetamines are an important class of CNS stimulants widely used therapeutically (Weiner, 1985) and as drugs of abuse (Peroutka, 1987). The pharmacological properties of amphetamines include locomotor stimulation in lobster, euphoria (Weiner, 1985; Seiden et al., 1993), enhancement of memory (Delany et al., 1983; Gold et al., 1984; Holdefer and Jensen, 1987; Strupp et al., 1991; Janak and Martinez, 1992; Soetens et al., 1993) and neurotoxicity (Ricautre et al., 1985; Sonsalla et al., 1989; Farfel et al., 1992) in higher animals. These properties are thought to result from the inhibition of monoamine reuptake at nerve terminals (Weiner, 1985; Seiden et al., 1993). For instance, ecstasy, a ring-substituted amphetamine, potently blocks 5-HT reuptake (Rudnick and Wall, 1992) and produces marked euphoria (Peroutka, 1987). However, it is unclear whether the properties of these drugs arise solely from the inhibition of monoamine reuptake. Recently, a number of reports have demonstrated that both the locomotor stimulation (Karier et al., 1994) and the neurotoxicity (Sonsalla et al., 1989; Farfel et al., 1992) associated with amphetamines can be blocked by glutamate receptor antagonists. In addition, tricyclic antidepressants are known also to inhibit 5-HT reuptake but have different psychoactive properties from ecstasy (Baldessarini, 1985). Finally, some ecstasy analogs are non-neurotoxic despite being potent reuptake inhibitors (Rudnick and Wall, 1993). These observations indicate that amphetamines may express some of their effects independently of 5-HT reuptake, possibly by modulating EAA transmission. Indeed, amphetamine has been reported to increase the release of glutamate in rat central neurons in vivo (Moniri et al., 1981; Mora and Porras, 1983) and in the lobster neuromuscular junction (Turkanis et al., 1988). A potentiation of EAA transmission by amphetamines may account for their neurotoxic and locomotor stimulatory effects and is consistent with the observation that they can enhance memory formation. However, no currently known mechanism can explain an amphetamine-induced increase in glutamate release. The present experiments were therefore conducted to investigate the electrophysiological effects of ecstasy in cultured hippocampal neurons.

Materials and Methods

Hippocampal neurons in culture for 1 to 2 weeks (Premkumar et al., 1990) were studied using patch-clamp techniques (Hamill et al., 1981). The bath solution contained (in mM) NaCl, 124; KCl, 2.5 or 10; CaCl2, 2; NaHCO3, 26; Na2HPO4, 3.2. and was equilibrated with a gas mixture of 95% CO2 and 5% O2 (pH 7.2–7.3). Patch electrodes were made from thick-walled borosilicate glass tubes (Clark Electromedical) and filled with a solution that contained, unless otherwise indicated (in mM), K-glutamate, 140; MgCl2, 1; HEPES, 10; pH adjusted to 7.3 with KOH. Electrodes had a resistance of 5 to 15 MΩ. Currents were recorded with a current-to-voltage converter (Axopatch 200), filtered at 2 kHz, digitized at 44 kHz (Sony-PCM) and stored on video tape. All experiments were performed at room temperature (22°C–28°C). Agar-bridge electrodes were used to avoid changes in the junction potential. The capacitative current was always canceled, and the series resistance compensation was set at

Received for publication January 10, 1995.

ABBREVIATIONS: MDMA, 3,4-methylenedioxymethamphetamine; K+rest, a resting potassium conductance; K+, potassium ion; Ba++, barium ion; EPSCs, excitatory postsynaptic currents; IPSCs, inhibitory postsynaptic currents; EACs, excitatory autaptic currents; IACs, inhibitory autaptic currents; 5-HT, 5-hydroxytryptamine; EAA, excitatory amino acid; NMDA, N-methyl-D-aspartate; AMPA, α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid; GABA, γ-amino butyric acid.
80%–90%. The whole-cell data were digitized at 100 Hz, and every 10th point has been plotted. The single-channel and synaptic current data were filtered at 2 kHz and digitized at 5 kHz using an IBM-compatible-PC and were analyzed using the CHANNEL2 computer program written by Michael Smith. Experimental values are presented as mean ± S.E.M. Student's t test was used to estimate significance. Cells under voltage/current-clamp were perfused continuously with the control solution from a 300-μm barrel positioned about 100 to 200 μm from the cells, and the drugs were applied from another barrel moved into position with a hydraulic manipulator for the required period of time.

Hippocampal neurons, when grown individually on microislands without contact with neighboring cells, make synapses onto the same neuron, resulting in an autaptic cell (Segal, 1991; Bekkers and Stevens, 1991). These neurons are either excitatory or inhibitory. A 2-msec depolarizing pulse from the holding potential of −80 to 0 mV evoked either EACs or IACs. Currents were isolated electrophysiologically, the composition of the solutions reversed the EACs close to 0 mV, whereas the IACs were reversed around −70 mV. The data were filtered at 2 kHz and digitized at 5 or 10 kHz, and every fifth point has been plotted. Spontaneous EPSCs were recorded at a holding potential of −80 mV (more negative than EK) with 140 mM potassium gluconate in the pipette and sodium chloride in the bath. All spontaneous EPSCs were isolated when the cell was exposed to CNQX (20 μM) and APV (100 μM) or MK-801 (10 μM). The inhibitory currents were isolated and recorded at a holding potential of 0 mV with the same solutions as above and were blocked with 100 μM bicuculline. The spontaneous synaptic currents were partly analyzed using criteria described by Manabe et al. (1992).

Drugs. Drugs used in this study were obtained from the following companies: ecstasy (Makor Chemical Co., Israel), APV, bicuculline methiodide b-amphetamine (Sigma Chemical Co., St. Louis, MO), Ephedrine sulfate (David Bull Laboratories, Australia), noradrenaline (Winthrop Laboratories, Australia), and CNQX, MK-801 (Research Biochemicals Inc., Natick, MA). Drugs were dissolved in external solution, and the required concentration was made from a stock before the experiment.

Results

Ecstasy blocks a resting K⁺ conductance. Application of ecstasy (100 nM–200 μM) produced an inward current when the neurons were voltage clamped at −60 mV. The amplitude of the current became smaller at hyperpolarized membrane potentials, and the current reversed around −90 mV (see fig. 1, A and C). The current recorded at 0 mV with 200 μM ecstasy had a mean amplitude of 98.8 ± 7.7 pA (mean ± S.E.M., n = 44, range 28–256 pA). The inward current was associated with a decrease in membrane conductance (fig. 1B), which indicates that the inward current was due to a current relaxation. The inward current could be recorded only with potassium ions in the pipette solution and was not affected by whether it contained potassium gluconate or potassium chloride. Furthermore, changing the extracellular K⁺ concentration from 2.5 mM to 10 mM shifted the reversal potential from −92.1 ± 0.4 mV to −51.1 ± 0.4 mV (n = 3) (fig. 1C); the shift is consistent for a potassium-selective channel with a PNa/PK Ratio of 0.02/0.04. These observations indicate that the effect is due to a current relaxation produced by the closure of K⁺ channels. The whole-cell currents recorded in response to increasing concentrations of ecstasy are shown in figure 2A. Normalized dose-response data obtained from four different experiments in which the ecstasy concentration was varied were fitted by a single site binding scheme with half-maximal response at

11.8 μM (fig. 2B). Pharmacological concentrations for ecstasy in human plasma range from 0.5 to 30 μM (Dowling, 1990).

Ecstasy blocks a barium-sensitive IKres. Application of BaCl₂ (1 mM), which is known to block IKres (Storm, 1990), also produced a current relaxation (128.1 ± 17.8 pA, n = 12, range 40–243 pA). To test whether ecstasy and barium chlo-
ride blocked the same potassium channels, we applied ecstacy (200 \mu M) in the presence of BaCl₂ (1 mM). The current relaxation produced by ecstacy and barium chloride was not additive, which suggests that the same types of resting potassium channels were blocked by ecstacy and barium chloride (n = 5, fig. 3A). The currents were recorded at a holding potential of 0 mV. The current relaxation produced by ecstacy is due neither to the blockade of ATP nor to Ca⁺⁺-sensitive K⁺ channels, because inclusion of ATP (2 mM, n = 4) or of the calcium chelator 1,2-bis(2-aminophenoxy)ethane-N,N',N'-tetraacetic acid (BAPTA, 20 mM, n = 4) in the pipette did not affect the response to ecstacy. Application of noradrenaline (500 \mu M, n = 6), which is known to close cyclic AMP-dependent K⁺ channels in hippocampal slices (Nicoll, 1988), did not produce any response in these dialysed cells (n = 6).

Single-channel currents were recorded using inside-out or outside-out membrane patches to identify the type of channel blocked by ecstacy and to clarify the mechanism of block. At a holding potential of 0 mV, several background channels were recorded. Application of ecstacy (50–200 \mu M, n = 9, 6 outside-out and 3 inside-out patches) selectively blocked a 50-pS potassium channel (46.7 ± 1.8 pS) by holding it in a partly open state that had a conductance of about 15 pS (15.9 ± 1.2 pS fig. 3B). BaCl₂ (1 mM) completely blocked the 50-pS channel (Fig. 3C). This current could not be recorded unless the pipette solutions contained potassium ions, and the single-channel currents reversed around −90 mV. Related amphetamines also blocked IK⁰⁺⁺, and we found that other sympathomimetic amines, d-amphetamine (n = 6) and ephedrine (n = 7), produced a blockade of IK⁰⁺⁺ in whole-cell and single-channel recording. The relative potency was 1: 0.6: 0.3 for ecstacy, d-amphetamine and ephedrine, respectively. However, noradrenaline did not block IK⁰⁺⁺ (n = 6; data not shown). Because ecstacy is an inhibitor of 5-HT reuptake, it is possible that the blockade of IK⁰⁺⁺ is mediated by 5-HT, which has been shown to block K⁺ conductance (Andrade and Nicoll, 1987; Belardetti and Siegelbaum, 1988). However, we (Premkumar and Gage, 1994) found, as have others (Uneyama et al., 1993), that direct application of 5-HT to cultured hippocampal neurons in fact activated K⁺ conductance.

Ecstacy increases neuronal excitability. Blockade of IK⁰⁺⁺ by ecstacy should enhance neuronal excitability, and to clarify this, we conducted experiments under current-clamp conditions. Ecstacy 50–\mu M and 200 \mu M depolarized the membrane by 5.3 ± 0.6 mV (n = 5) and 10.7 ± 3.4 mV (n = 3, fig. 1D), respectively. Ecstacy also increased action potential frequency without affecting the duration, but amplitude of the action potentials was reduced and appeared to be concentration-dependent. Voltage-dependent Na⁺ and K⁺ currents were marginally attenuated at lower concentrations (50 \mu M) but were significantly blocked at higher concentrations (200 \mu M). The sodium and potassium currents were activated by a voltage pulse from −120 mV to +20 mV. Ecstacy (50 \mu M) blocked the sodium and potassium currents 18.2% ± 3% and 11.2% ± 1.9%, respectively (n = 8), compared to 59% ± 9% and 48% ± 5.7%, respectively (n = 3), with 200 \mu M ecstacy.

Effect of ecstacy on synaptic transmission. During the course of these experiments, we observed a consistent increase in the frequency of the spontaneous synaptic currents. To determine whether ecstacy modulated synaptic transmission, we studied its effects on EACs and IACs recorded from cultured hippocampal neurons grown on microislands (Segal, 1991; Bekkers and Stevens, 1991). In five of eight excitatory cells, application of ecstacy (20–50 \mu M) produced a clear and irreversible increase in the amplitude of evoked EACs (29% ± 13%, range 5%–64%), and the increase was maintained after 5 to 15 min washout (53% ± 18%, range 12% to 89%, fig. 4A). No further increase was noted in cells from the same culture plates that had already been exposed to ecstacy. In contrast, in 12 of 12 inhibitory cells, ecstacy did not affect current amplitude but prolonged that decay of the current by 87% ± 8% (range 29% to 120%), an effect that was readily reversible (fig. 4B). Application of ecstacy (50–200 \mu M) induced up to a 4-fold increase in the frequency of spontaneous EPSCs (2.78 ± 0.34-fold, n = 7; fig. 3C) without affecting the frequency of spontaneous IPSCs (0.94 ± 0.25-fold, n = 7, P < .005, Student's t-test). However, as with autaptic currents, ecstacy prolonged the decay phase of spontaneous IPSCs. The effects were not due to changes in cable properties, because the rise time (10%–90%) and the amplitude of the spontaneous synaptic currents were unaffected (fig. 4, D and E). To determine whether the effects were mediated by a block of IK⁰⁺⁺, we investigated the effects of Ba⁺⁺ on evoked
and increased action potential frequency. In addition, a blockade of IK$_{rest}$ by itself should increase neuronal excitability by increasing the input resistance and making the cells more electrotonically compact. Single-channel recordings indicated that ecstasy specifically blocked a 50-pS barium-sensitive resting potassium channel by reducing the channel conductance without affecting the open probability. The blockade by Ba$^{2+}$, in contrast, appeared to be due to total block of the channel. The blockade by ecstasy was effective in channels recorded in both inside-out and outside-out patches, which suggests that ecstasy directly interacts with the channel pore. At higher concentration, ecstasy also blocked voltage-activated sodium and potassium currents. Inhibition of the Na$^+$ current may appear paradoxical but is consistent with the mild anesthetic action produced by amphetamines (Weiner, 1985) at pharmacological doses. Cocaine, which is a central stimulant and a drug of abuse, also blocks the voltage-dependent sodium channels (Crumb and Clarkson, 1990).

The effects of ecstasy on synaptic transmission are profound and complex. These effects are different in excitatory and inhibitory synapses. The amplitude of EACs increased irreversibly, and the frequency of spontaneous EPSCs recorded in the presence of TTX also increased. In contrast, both the amplitude of IACs and the frequency of spontaneous IPSCs were unchanged, and the decay phase of these currents was reversibly prolonged. The effects on inhibitory transmission are likely to result from the blockade of IK$_{rest}$ because ecstasy and Ba$^{2+}$ produced similar responses. However, Ba$^{2+}$ failed to produce a response identical to that produced by ecstasy in the excitatory synapse. One interpretation of this result is that Ba$^{2+}$ may have an additional effect of antagonizing Ca$^{2+}$-dependent changes in transmitter release (for example, phosphorylation/dephosphorylation), and this may mask the effects of depolarization. Another possibility is that ecstasy has a separate and as yet unknown action on stimulating transmitter release. Whatever the case, it is an interesting observation that ecstasy has different effects at excitatory and inhibitory synapses. A postsynaptic locus of action is ruled out by the observation that whole-cell currents in response to the application of NMDA, AMPA or GABA were unaffected. Thus in the excitatory synapse, ecstasy appears to act presynaptically by blocking resting potassium channels and thus causing depolarization of the presynaptic terminal, which in turn may facilitate transmitter release. In contrast, the prolongation of evoked and spontaneous inhibitory currents indicates a postsynaptic locus. But the whole-cell current in response to GABA was unaffected, so a direct effect on the GABA receptor channel is unlikely. One possibility is that ecstasy may slow uptake of GABA from the cleft, either directly or through an IK$_{rest}$-dependent mechanism. It is also possible that ecstasy facilitates rebinding of GABA, as shown with benzodiazepines (Study and Barker, 1981). Alternatively, although less likely, the open time of GABA receptor channels may be prolonged by depolarization in the dendrites, which is ineffectively voltage-clamped.

Significance of K$^+$ channel blockade. Up and down-regulation of K$^+$ channels have been previously shown to influence neuronal excitability and synaptic transmission. In *Aplysia*, closure of K$^+$ channels by 5-HT (Belardetti and Siegelbaum, 1988) causes excitation and presynaptic facilitation.
ation, whereas in the hippocampus, K⁺ channel blockers produce a form of long-term potentiation (LTP_K) attributed to enhanced presynaptic glutamate release (Ankatzie in and Ben-Ari, 1991). Stimulation of metabotropic glutamate receptors also blocks K⁺ channels (Charpak et al., 1990) and produces LTP (Bortolotto and Collingridge, 1993; O'Connor et al., 1994). Blockade of IK_{AT} and enhancement of synaptic strength by excitatory may contribute to the locomotor stimulatory and the memory-enhancing properties of amphetamines. In addition, excessive release of glutamate, which is neurotoxic (Ricaurte et al., 1985), may underlie amphetamine neurotoxicity; this is consistent with the neuroprotection afforded by glutamate receptor antagonists. Conversely, up-regulation (opening) of K⁺ channels is neuroprotective (Heurteaux et al., 1993) and has been shown to underlie actions of certain general anesthetics (Franks and Lieb, 1988) and antihistamines (Reiner and Kamondi, 1994). In conclusion, our results demonstrate a novel action of ecstasy that may account for some of the pharmacological properties of amphetamines and may prove useful in developing treatments for their abuse and in employing them as tools for understanding synaptic release processes.

Acknowledgments

We thank Prof. P. W. Gage for the space, equipment and encouragement and Drs. J. M. Bekkers and J. Clemen for discussion and comments on the manuscript. We also thank Dr. J. M. Bekkers for making available autaptic cultures, B. McLachlan for cultures and M. Smith for writing computer programs used in data analysis.

References

